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 Generalization of the dot product 

 Inner product is an operator to two vectors in a vector space that yields a scalar 

 Axioms 
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 Norm: vvv
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 Distance: vuvud
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 For Euclidean vectors, the inner product is usually the dot product 

 For single variable functions, the inner product is usually 
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 Cauchy-Schwarz Inequality: vuvu
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 Orthogonality: vu
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o Orthogonal non-zero vectors are always linearly independent 

 Orthogonal basis: a basis of V of only orthogonal vectors 
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 be an orthogonal basis for V. Then

n

n

n v
v

vv
v

v

vv
v

v

vv
vVv

















222

2

2

12

1

1 ,
...

,,
,   

o Note that this is just a bunch of vector projections 

 Orthonormal basis: a basis of V of only orthogonal vectors with a norm of 1. 

o Let },...,,{ 21 nvvvS
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 be an orthonormal basis for V. Then
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 Orthogonal matrix 
o Denoted Q. 

o A square matrix is an orthogonal matrix if its column vectors form an 

orthonormal set. 

o Row vectors also form an orthonormal set 

o A square matrix is orthogonal iff 1QQT   

 Inverse of Q is also orthogonal 
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o Products of orthogonal matrices are orthogonal 
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